Thursday, 7 January 2016

Level Order Tree Traversal....

// Recursive C program for level order traversal of Binary Tree
#include <stdio.h>
#include <stdlib.h>
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct node
{
    int data;
    struct node* left, *right;
};
/* Function protoypes */
void printGivenLevel(struct node* root, int level);
int height(struct node* node);
struct node* newNode(int data);
/* Function to print level order traversal a tree*/
void printLevelOrder(struct node* root)
{
    int h = height(root);
    int i;
    for (i=1; i<=h; i++)
        printGivenLevel(root, i);
}
/* Print nodes at a given level */
void printGivenLevel(struct node* root, int level)
{
    if (root == NULL)
        return;
    if (level == 1)
        printf("%d ", root->data);
    else if (level > 1)
    {
        printGivenLevel(root->left, level-1);
        printGivenLevel(root->right, level-1);
    }
}
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(struct node* node)
{
    if (node==NULL)
        return 0;
    else
    {
        /* compute the height of each subtree */
        int lheight = height(node->left);
        int rheight = height(node->right);
        /* use the larger one */
        if (lheight > rheight)
            return(lheight+1);
        else return(rheight+1);
    }
}
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node = (struct node*)
                        malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return(node);
}
/* Driver program to test above functions*/
int main()
{
    struct node *root = newNode(1);
    root->left        = newNode(2);
    root->right       = newNode(3);
    root->left->left  = newNode(4);
    root->left->right = newNode(5);
    printf("Level Order traversal of binary tree is \n");
    printLevelOrder(root);
    return 0;
}

Output:
Level order traversal of binary tree is - 
1 2 3 4 5 
 
 
Time Complexity: O(n^2) in worst case. For a skewed tree, printGivenLevel() takes O(n) time where n is the number of nodes in the skewed tree. So time complexity of printLevelOrder() is O(n) + O(n-1) + O(n-2) + .. + O(1) which is O(n^2).

No comments:

Post a Comment